Видеокарта

Устройство современных видеокарт

Что такое GPU?

GPU (Graphics Processing Unit или же Графическое Процессорное Устройство) представляет собой специализированный тип микропроцессора, оптимизированный для очень специфических вычислений и отображения графики. Графический процессор работает на более низкой тактовой частоте в отличие от процессора, но имеет намного больше процессорных ядер.

Также можно сказать, что GPU — это специализированный CPU, сделанный для одной конкретной цели — рендеринг видео. Во время рендеринга графический процессор огромное количество раз выполняет несложные математические вычисления. GPU имеет тысячи ядер, которые будут работать одновременно. Хоть и каждое ядро графического процессора медленнее ядра центрального процессора, это все равно эффективнее для выполнения простых математических вычислений, необходимых для отображения графики. Этот массивный параллелизм является тем, что делает GPU способным к рендерингу сложной 3D графики, требуемой современными играми.

Из чего состоит видеокарта

Сегодня мы рассмотрим именно современные дискретные видеокарты, ведь интегрированные имеют совсем другую комплектацию и, в основном, они встроены в процессор. Дискретный графический адаптер представлен в виде печатной платы, которая вставляется в соответствующий разъем расширения. Все компоненты видеоадаптера расположены на самой плате в определенном порядке. Давайте подробнее разберем все составные части.

Графический процессор

В самом начале нужно поговорить о самой важной детали в видеокарте – GPU (графический процессор). От данного компонента зависит быстродействие и мощность всего устройства

В его функциональность входит обработка команд, связанных с графикой. Графический процессор берет на себя выполнение определенных действий, за счет чего снижается нагрузка на ЦП, освобождая его ресурсы для других целей. Чем современнее видеокарта, тем мощность установленного в ней GPU больше, она может превосходить даже центральный процессор благодаря наличию множества вычислительных блоков.

Видеоконтроллер

За генерацию картинки в памяти отвечает видеоконтроллер. Он посылает команды на цифро-аналоговый преобразователь и проводит обработку команд ЦП. В современной карточке встроенно несколько компонентов: контроллер видеопамяти, внешней и внутренней шины данных. Каждый компонент функционирует независимо друг от друга, позволяя осуществлять одновременное управление экранами дисплеев.

Видеопамять

Для хранения изображений, команд и промежуточных не видимых на экране элементов необходимо определенное количество памяти. Поэтому в каждом графическом адаптере присутствует постоянный объем памяти. Она бывает разных типов, отличающихся по своей скорости работы и частоте. Тип GDDR5 на данный момент является самым популярным, используется во многих современных карточках.

Однако еще стоит учитывать, что помимо встроенной в видеокарту памяти новые устройства задействуют и ОЗУ, установленную в компьютере. Для доступа к ней используется специальный драйвер через шину PCIE и AGP.

Цифро-аналоговый преобразователь

Видеоконтроллер формирует изображение, однако его нужно преобразовать в необходимый сигнал с определенными уровнями цвета. Данный процесс выполняет ЦАП. Он построен в виде четырех блоков, три из которых отвечают за преобразование RGB (красный, зеленый и синий цвет), а последний блок хранит в себе информацию о предстоящей коррекции яркости и гаммы. Один канал работает на 256 уровнях яркости для отдельных цветов, а в сумме ЦАП отображает 16,7 миллионов цветов.

Постоянное запоминающее устройство

ПЗУ хранит в себе необходимые экранные элементы, информацию с BIOS и некоторые системные таблицы. Видеоконтроллер никак не задействуется вместе с постоянным запоминающим устройством, обращение к нему происходит только со стороны ЦП. Именно благодаря хранению информации с BIOS видеокарта запускается и функционирует еще до полной загрузи ОС.

Система охлаждения

Как известно, процессор и графическая карта являются самыми горячими комплектующими компьютера, поэтому для них необходимо охлаждение. Если в случае с ЦП кулер устанавливается отдельно, то в большинство видеокарт вмонтирован радиатор и несколько вентиляторов, что позволяет сохранить относительно низкую температуру при сильных нагрузках. Некоторые мощные современные карточки очень сильно греются, поэтому для их охлаждения используется более мощная водяная система.

Интерфейсы подключения

Современные графические карты оснащены преимущественно по одному разъему HDMI, DVI и Display Port. Данные выводы являются самыми прогрессивными, быстрыми и стабильными. Каждый из этих интерфейсов имеет свои преимущества и недостатки, с чем вы можете подробно ознакомиться в статьях на нашем сайте.

В этой статье мы подробно разобрали устройство видеокарты, детально рассмотрели каждый компонент и выяснили его роль в устройстве. Надеемся, что предоставленная информация была полезной и вы смогли узнать что-то новое.

Видеокарта – компонент архитектуры современного ПК, отвечает за преобразование графической информации в видеосигнал для монитора. Видеокарта представляет собой плату расширения, которая устанавливается в специальный слот (PCI-Express) материнской платы. Также видеокарта может быть встроенной, то есть, входить в состав северного моста чипсета материнской платы или быть интегрированной в центральный процессор.

Видеопамять

Работа видеокарты сосредоточена на постоянном выводе цифрового изображения на экран. Существует необходимость в сохранении выводящейся, а также остающейся за пределами экрана информации. Это задача возложена на видеопамять карты.

Память видеокарты по своим свойствам похожа на оперативную память компьютера.

Зачастую память карты используют для маркетинга, особенно в слабых (не игровых и не профессиональных) видеокартах. Кричащие 4 гб памяти почему-то сразу вызывают доверие у неподготовленного покупателя. Но один и тот же объём памяти радикально отличается на разных видеоадаптерах, если говорить о реальной производительности в требовательных задачах и современных играх. Например, даже самая бюджетная из игровых видеокарт nVidia GTX 1050 с двумя гигабайтами памяти во всех задачах покажет себя лучше, чем любой представитель карт серии GT.

Объём видеопамяти – важный, но не ключевой показатель.

Видеопамять в основном делается по стандарту GDDR. В наше время, у пользователей зачастую можно обнаружить память типа GDDR5. Ранее была распространена GDDR3.

Очевидно, что чем выше цифра, тем лучше, так как в каждой новой версии были ряды изменений, которые увеличивали пропускную способность и скорость тактовой частоты. Сейчас среди активных разработчиков можно заметить AMD, Hynix и Qimonda.

Интерфейсы подключения видеокарт

Интерфейсы подключения служат для соединения комплектующих и материнской платы. Различные периферийные устройства (сетевые и звуковые карты, ТВ-тюнеры и т.п.) как правило подключаются через PCI. Это стандартная шина ввода-вывода, но речь не о ней, т.к. для видеокарт используются другие слоты. До 2006 года был популярен интерфейс AGP, затем ему на смену пришёл PCIexpess (PCIe).

AGP

AGP был создан по технологиям PCI, но предназначен исключительно для видеокарт. Он отличается более высокой пропускной способностью. Последняя обновленная версия AGP 8x обладает пропускной способностью 2.1 Гб/с. Платы с AGP выпускались до 2006 года. Больше не производится, т.к. появился более совершенный интерфейс – PCIexpress.

PCIe

PCI Express

PCI Express, отличии от AGP, обладает большей пропускной способностью, постоянно модернизируется и имеет обратную совместимость. На данный момент существуют 4 версии, следуя порядковому номеру. Самой последней является, PCIe 4.0. С каждым разом разработчики увеличивали пропускную способность интерфейса. Сейчас им удалось достигнуть отметки в 16 Гбит/с. Не стоит забывать про то, что PCI Express видеоадаптера и материнской платы зачастую не совпадают. Однако особого риска и страха здесь нет. Видеокарта будет работать на старой материнке, хоть и не сможет работать на всю свою мощность. При обратной совместимости вообще не возникает проблем.

Из чего состоит видеокарта

Во-первых, важно знать, что существует два вида видеокарт – это дискретная и интегрированная. Первая представляет из себя отдельное комплектующее с собственной системой охлаждения

Вторая – встроена в материнскую плату ПК. Мощность второго  видеоадаптера будет невысокой

Именно поэтому заострим внимание на дискретной видеокарте

В начале необходимо ознакомится с «сердцем» любой видеокарты, которое выполняет большинство графических задач, связанных с прорисовкой графических деталей. От мощности этого небольшого компонента зависит быстродействие всего устройства. Так как часть работы процессора он берёт на себя, тем самым снижая нагрузку на ЦП. Чем мощнее графический процессор, тем мощнее видеокарта. А в некоторых случаях процессор видеокарты может превосходить по мощности ЦП.

Этот компонент напрямую отвечает за генерацию картинки, которую создаёт графический процессор. Он отправляет команды в цифро-аналоговый преобразователь и производит обработку команд. В современной карте встроено несколько таких компонентов, что позволяет управлять сразу несколькими экранами. Это позволяет использовать несколько мониторов, а также работать в несколько окон.

После отображение графических элементов на экране они хранятся в выделенной видеопамяти некоторое время, когда эти элементы не отображаются на экране. В нужный момент видеокарта подгружает необходимые детали из видеопамяти. Существует несколько типов, которые разнятся между собой за скоростью и частотой работы, но на сегодняшний день самым популярным считается тип GDDR5, который устанавливается на все современные карты. Помимо видео-памяти компьютер берёт некоторое количество ОЗУ, так как помимо графических деталей система прорабатывает и физические.

Видеоконтроллер создаёт изображение в виде специальных сигналов, которые не имеют ничего схожего с обычной картинкой. За конвертацию таких сигналов отвечает цифро-аналоговый переобразователь, который принимает сигналы с видеоконтроллера, а затем создаёт из них полноценное цветное изображение. Сам ЦАП состоит из четырёх блоков, три из которых отвечают за RGB-регулировку цветов, а четвёртый за яркость и гамму.

Данный компонент выполняет лишь одну функцию, а именно позволяет системе запуститься. Работать это устройство начинает после обращения ЦП, и поэтому видеокарта начинает работать ещё до полного запуска системы. Оно хранит в себе некоторые данные BIOS, которые позволяют произвести запуск системы.

Немаловажный компонент, без которого не может обойтись ни одна видеокарта. Как известно при нагрузках видеокарта начинает производить больше вычислений, и, соответственно, нагреваться. Именно поэтому для во избежание перегревов необходимо чем-то охлаждать видеокарту. Эту роль выполняет система охлаждения видеокарты, которая может быть трёх типов – пассивная (радиаторная), активная (радиатор + вентилятор) и водяное охлаждение. Водяное охлаждение видеокарт лучше всего охлаждает компоненты, поэтому его лучше использовать на мощных компьютерах.

Интерфейсы подключения

На боковой задней части видеокарты можно заметить множество разъёмов, которые преимущественно отвечают за вывод изображения с видеокарты. Это могут быть HDMI, DVI и Display Port. Они считаются самыми стабильными и эффективными для передачи данных.

История

Apple II — первый компьютер с отдельным видеочипом

Принцип видеокарты был впервые применен на микрокомпьютере Apple II, графические возможности которого можно было улучшить за счет дополнительных подключаемых карт.

Первый IBM PC был выпущен в 1981 году с картой, которая позволяла отображать текст только в сплошном цвете (MDA = адаптер для монохромного отображения). Компания Hercules разработала лучшую карту в 1982 году — графическую карту Hercules.

К 1989 году типы цветных видеокарт стали стандартом, который IBM вновь выпустила на рынок:

  • Карта CGA 1982 года выпуска.
  • 1984 год карта EGA.
  • 1987 с картами MCGA и VGA моделей PS / 2 с картами MCGA и VGA


MDA IBM — первая в истории видеокарта

Компания IBM установила отраслевые стандарты вплоть до PC / AT, которые были приняты индустрией комбинированных систем IBM-PC. Временно режим VGA (640×480 точек в 16 цветах) используется на некоторых компьютерах, поскольку до этого времени программное обеспечение могло управлять аппаратным обеспечением видеокарт ПК единообразно. Однако распространены и более новые стандарты, такие как режимы, стандартизированные Ассоциацией стандартов видеоэлектроники (VESA) (реализованные как расширения VESA BIOS) или UEFI GOP (протокол графического вывода), которые обычно поддерживают режимы с более высоким разрешением и большим количеством цветов, но в большинстве случаев по-прежнему включают режим VGA. Другие обозначения SVGA, XGA и т. д. Больше не являются стандартами видеокарт, а представляют собой краткие обозначения разрешения экрана, например, XGA с разрешением 1024 × 768 точек.

Примерно до 1990 года видеокарты ограничивались преобразованием содержимого графической памяти в выходные сигналы для монитора с помощью модуля RAMDAC. По сути, программист мог использовать только текстовый режим, а в графическом режиме он мог настраивать отдельные пиксели на определённый цвет. Это было первое поколение видеокарт. За ним последовали ещё два: так называемые ускорители Windows и 3D-ускорители.

Программное ускорение

Начиная с 1991 года, видеокарты были преобразованы в автономные небольшие вычислительные блоки с собственным графическим процессором (GPU), получившим название Graphics- или Pixel Engine, или dt. Этот графический процессор был создан для размещения отдельных пикселей и отправки команд для рисования линий, заливки поверхностей (Windows Accelerator). Эта функция значительно ускорила перемещение окон (Windows) графического пользовательского интерфейса. Концепция дополнительных функций получила дальнейшее развитие, например с 1995 года были разработаны функции ускорения воспроизведения видео (например, в формате AVI) и декодирования сжатых видеоданных (например, MPEG). Эти функции ранее предлагались на отдельных присоединяемых платах.

Аппаратное ускорение


3dfx Voodoo 2 (Diamond Monster 3D II, 12MB)

В середине 1990-х годов 3Dfx выпустила первый жизнеспособный 3D-ускоритель — графический чип Voodoo Graphics. 3D-ускоритель позволяет программе в трехмерном пространстве определять геометрические фигуры в виде многоугольников и текстур, которыми должны быть заполнены поверхности многоугольников (рендеринг). Данная задача по-прежнему требовала от процессора больших вычислительных ресурсов в ранних 3D-играх; теперь её можно передать на видеокарту, что значительно повысило производительность игр (лучшее разрешение изображения, более реалистичная графика).

Когда первые 3D-ускорители первого поколения были установлены на собственные подключаемые платы, через которые передавался графический сигнал 2D-видеокарты, то вскоре появились решения объединяющие 2D и 3D функции на одной плате.

Сегодня технология с несколькими графическими процессорами используется для производства двух или более 3D-видеокарт и видеокарт с несколькими графическими процессорами соответственно.

Как делают видеокарты

Производство видеокарт — это сложный многоступенчатый процесс. Все начинается с создания самих плат, которые и являются основой для всех элементов. После изготовления платы требуется произвести напайку на них всех остальных элементов, делаться это может несколькими способами.

Для начала сверлят отверстия в нужных местах, либо наносится специальный раствор. После этого специальный агрегат устанавливает все необходимые внешние модули, а дальше все устройство отправляется в печь на пропайку. После этого остается установить только те модули, которые не требуется так жестко фиксировать и можно отправлять карту дальше.

https://youtube.com/watch?v=xkbsTcJ80PY

Отличие CPU и GPU

Графический процессор может выполнить лишь часть операций, которые может выполнить центральный процессор, но он делает это с невероятной скоростью. GPU будет использовать сотни ядер, чтобы выполнить срочные вычисления для тысяч пикселей и отобразить при этом сложную 3D графику. Но для достижения высоких скоростей GPU должен выполнять однообразные операции.

Возьмем, например, Nvidia GTX 1080. Данная видеокарта имеет 2560 шейдерных ядер. Благодаря этим ядрам Nvidia GTX 1080 может выполнить 2560 инструкций или операций за один такт. Если вы захотите сделать картинку на 1% ярче, то GPU с этим справится без особого труда. А вот четырехъядерный центральный процессор Intel Core i5 сможет выполнить только 4 инструкции за один такт.

Тем не менее, центральные процессоры более гибкие, чем графические. Центральные процессоры имеют больший набор инструкций, поэтому они могут выполнять более широкий диапазон функций. Также CPU работают на более высоких максимальных тактовых частотах и имеют возможность управлять вводом и выводом компонентов компьютера. Например, центральный процессор может интегрироваться с виртуальной памятью, которая необходима для запуска современной операционной системы. Это как раз то, что графический процессор выполнить не сможет.

Как работает видеокарта

Обработка графики

Когда компьютер или устройство готовятся отобразить графику на экране, центральный процессор (CPU) передает данные графическим процессорам (GPU) на видеокарте. Графический процессор обрабатывает эти данные, преобразуя их в точки, линии, текстуры и объекты. Затем он выполняет расчеты освещения, теней, текстурных фильтров и других эффектов, чтобы создать готовое изображение.

Отображение изображения на мониторе

После обработки графики видеокарта передает готовое изображение на монитор через интерфейс, такой как HDMI или DisplayPort. Однако мониторы имеют свои собственные ограничения в виде частоты обновления, измеряемой в герцах (Гц). Частота обновления монитора определяет, сколько кадров в секунду он может отображать. Чтобы избежать эффекта разрыва кадров, который проявляется как «рваные» изображения, используются технологии синхронизации кадров, такие как V-Sync, G-Sync или FreeSync.

Рендеринг и алгоритмы

Процесс рендеринга включает расчет и отображение 3D-сцен в двухмерные изображения на экране. Видеокарты используют различные алгоритмы рендеринга, такие как Ray Tracing и Rasterization, чтобы создать реалистичные и красивые графические сцены. Ray Tracing, например, позволяет смоделировать отражение, преломление и тени с высокой степенью реализма, в то время как Rasterization более эффективен в обработке множества мелких объектов.

Графический процессор (GPU)

GPU (графический процессор) – является «сердцем» видеокарты, который отвечает за математические расчеты изображения, выводящегося на экран.  Иными словами – обработка графики. GPU по своим свойствам похож на центральный процессор (CPU) компьютера, однако предназначен для построения изображения.

Частота

Одна из важнейших характеристик графического процессора – тактовая частота. С ней всё просто. Она измеряется в мегагерцах и чем выше его показатель, тем быстрее идет обработка информации. Частота современных видеокарт достигает отметки в 1000-1400 Мгц.

Техпроцесс

Важным показателем является техпроцесс, это один из первых пунктов среди характеристик видеоадаптеров. Измеряется в нанометрах.

Грубо говоря, основной движущей силой являются транзисторы. Если взять современные видеокарты, то можно заметить, что показатель нанометров все меньше и меньше с каждым поколением видеочипов. Все это обусловлено тем, что чем меньше размер транзисторов, тем больше их можно разместить на одном видеочипе.

С уменьшением размера транзисторов, в целом у видеокарт уменьшается также:

  • Энергопотребление;
  • Тепловыделение (TDP);

Производительность при этом увеличивается, так как на одной площади можно разместить больше вычислительной мощности.

Чем меньше техпроцесс, тем лучше.

Как выбрать видеокарту

Видеокарта состоит из следующих элементов:

Графический процессор. Отвечает за обработку данных, из которых в дальнейшем будет формироваться изображение. Именно от его мощности зависит производительность и скорость всей видеокарты.

В некоторых видеокартах мощность графического процессора может превосходить мощность центрального процессора, благодаря большому количеству транзисторов. Тем самым снижается значительная нагрузка на центральный процессор.

Видеоконтроллер. Формирует изображение и передает его цифро-аналоговый преобразователь, а также обрабатывает команды центрального процессора. В современных видеокартах встроено несколько видеоконтроллеров, чтобы формировать изображение на несколько мониторов.

Видеопамять. Состоит из постоянного запоминающего устройства (ПЗУ), которое хранит в себе BIOS видеокарты, шрифты и служебные таблицы, и оперативного запоминающего устройства (ОЗУ), которое выступает в виде буфера для хранения покадрово-сформированного изображения, в последствии выводимого на монитор.

Цифро-аналоговый преобразователь (ЦАП). Перед тем как передать сформированное изображение на монитор, его нужно сначала преобразовать в сигналы, понятные монитору, для этого и существует ЦАП.

Изображение проходит обработку через четыре блока: три блока отвечают за цветовую коррекцию (красный – зеленый — синий) и один блок выполняет гамма-коррекцию.

Система охлаждения. При сильных нагрузках на видеокарту графический процессор начинает выделять большое количество тепла. Чтобы охладить его видеокарты снабжаются алюминиевыми радиаторами с медными трубками и вентиляторами.

В зависимости от выделяемого тепла видеокарты могут иметь от одного до трех вентиляторов. Некоторые видеокарты снабжаются «умной» системой охлаждения, которая активируется только при высоких нагрузках. При низких нагрузках вентиляторы на видеокарте не вращаются.

Интерфейсы подключения. Для передачи изображение на монитор на плате видеокарты присутствуют специальные разъемы:

  • HDMI – передает изображение и звук в цифровом формате,
  • VGA – передает только картинку в аналоговом формате (сейчас практически не используется),
  • DVI-D – современный аналог VGA-разъема, передает картинку в цифровом формате,
  • DisplayPort – передает изображение в цифровом формате с высокой частотой обновления.

Обзор и сравнение современных графических видеокарт

Индустрия видеокарт является одной из самых динамичных из всех сфер информационных технологий. Рассмотрим характеристики видеокарт по классам.

Дискретные видеокарты Hi-end класса

Для того чтобы играть в современные игры на максимальных или близких к максимальным настройках, следует обратить самое пристальное внимание на видеокарты этого класса. Такие видеокарты стоят дорого и потребляют очень много электроэнергии, так что ноутбук с такой графикой не будет долго работать от батареи

Это следует учитывать. Характеристики новейших видеокарт этого класса указаны в таблице ниже.

Дискретные видеокарты среднего уровня. Видеокарты этого класса стоят дешевле, чем видеокарты Hi-end класса и меньше нагружают аккумуляторную батарею. Однако они также дают возможность выполнять сложные задачи, связанные с графическими приложениями и играть в новейшие игры с высокими настройками детализации.

Бюджетные дискретные игровые видеокарты. Такие видеокарты также называют видеокартами нижнего сегмента среднего класса. Видеокарты такого уровня не позволяют играть в современные игры, требующие мощных видеокарт, на высоких настройках детализации. Однако, такая видеокарта потребляет значительно меньше энергии и ряд игр будут на них работать на невысоких настройках графики. Одним из преимуществ таких видеокарт является большее время работы ноутбука от аккумуляторной батареи, в сравнении с  использующими мощную видеокарту. Ноутбуки на таких видеокартах имеют умеренную стоимость.

Кроме рассмотренных классов видеокарт существует также класс интегрированных видеокарт, которые не приспособлены для новейших игр. В качестве примера таких видеокарт — Intel Graphics Media Accelerator (GMA) 3650, Intel Graphics Media Accelerator (GMA) 3600, Intel Graphics Media Accelerator (GMA) 3150. Такие видеокарты работают на платах с поддержкой встроенного видеоядра процессора.

Характеристики игровых видеокарт Hi-end класса:

Модель Архитек-тура Шейдеры Частота ядра, МГц Частота шейдеров, МГц Частота памяти, МГц Разрядн. шины памяти DirectX 3DMark05 3DMark06 3DM Vant. P GPU 3D Mark11 Vant. P GPU
NVIDIA GeForce GTX 680M SLI Kepler 2688 720 720 1800 256 11.1 32059 26530 35538 10983
AMD Radeon HD 7970M Crossfire GCN 2560 850 850 1200 256 11 36878 27647 35208.5 11119
NVIDIA GeForce GTX 680M Kepler 1344 720 720 1800 256 11.1 28025 23022.3 20723.5 5918
NVIDIA GeForce GTX 580M SLI Fermi 768 620 1240 1500 256 11 31017 23255 24335.3 5990
AMD Radeon HD 6990M Crossfire Terascale2 2240 715 715 900 256 11 28941 23292 24558 6422
NVIDIA GeForce GTX 485M SLI Fermi 768 575 1150 1500 256 11 29690 23415 23092 5334
AMD Radeon HD 6970M Crossfire Terascale2 1920 680 680 900 256 11 30784.5 22759 20547 5541.5
AMD Mobility Radeon HD 5870 Crossfire Terascale2 1600 700 700 1000 128 11 19079 16596.3 14096

Характеристики игровых видеокарт среднего уровня:

Модель Архитек-тура Шейдеры Частота ядра, МГц Частота шейдеров, МГц Частота памяти, МГц Разрядн. шины памяти DirectX 3DMark05 3DMark06 3DM Vant.P GPU 3D Mark11 Vant. P GPU
NVIDIA GeForce GT 640M Kepler 384 625 625 900 128 11 17710.7 10846,4 6406,6 1700,2
AMD Radeon HD 7730M GCN 512 575-675 575-675 900 128 11.1 16766 9615 5833 1478
ATI FirePro M7740 Terascale1 640 650 650 1000 128 10.1 17192 12109,5 5896
AMD Radeon HD 6775G2 Terascale2 880 11
AMD Radeon HD 7690M XT Terascale2 480 725 725 900 128 11 17545 10919 5594 1346
AMD FirePro M5950 Terascale2 480 725 725 900 128 11 19971 10592 5560 1350
AMD Radeon HD 6770M Terascale2 480 675/725 675/725 800 128 11 15484,2 10126,7 5149,8 1327,8
NVIDIA GeForce GT 635M Fermi 144 675-753 1350-1505 785-900 128/192 11 10818 5348 1393
NVIDIA GeForce GT 555M Fermi 144 525-753 1180-1505 785-900 128/192 11 18199,3 10453,2 4847,1 1178,9
ATI Mobility Radeon HD 5850 Terascale2 800 625 625 2000 128 11 15364,8 9866,8 5365,6

Характеристики игровых бюджетных видеокарт:

Модель Архитек-тура Шейдеры Частота ядра, МГц Частота шейдеров, МГц Частота памяти, МГц Разрядн. шины памяти DirectX 3DMark05 3DMark06 3DM Vant.P GPU 3D Mark11 Vant.P GPU
AMD Radeon HD 7630M Terascale2 480 450 450 900 128 11
NVIDIA Quadro FX 1800M GT2xx 72 560 1125 1100 128 10.1 15249 7572.5 2800.5
ATI Mobility Radeon HD 5650 Terascale2 400 450-650 450-650 800 128 11 12418.1 6459.8 2710.6 855.5
AMD Radeon HD 7660G Terascale3 384 497-686 497-686 11 11235 7316 4176 1056
AMD Radeon HD 6530M Terascale2 400 500 500 800 128 11 6963
NVIDIA GeForce GT 620M Fermi 96 625-715 1250 900 64/128 11 14930 7462.5 3675.5 916
NVIDIA Quadro K 500M Kepler 192 900 64 11
NVIDIA GeForce GT 525M Fermi 96 600 1200 900 128 11 13307 6902.1 2927.4 742.9
AMD Radeon HD 7610M Terascale2 400 450 450 800 128 11 12445.5 6669.5 3071 746.5

Выводы

Доброго всем времени суток, мои дорогие друзья и гости моего блога. Сегодня я бы хотел поговорить немного об аппаратной части наших компьютеров. Скажите пожалуйста, вы слышали про такое понятие как GPU? Оказывается просто многие впервые слышат такую аббревиатуру.

Как бы банально это не звучало, но сегодня мы живем в эру компьютерных технологий, и порой сложно найти человека, который понятия не имеет, как работает компьютер. Так, например, кому-то достаточно осознания, что компьютер работает благодаря центральному процессору (CPU).

Кто-то пойдет дальше и узнает, что есть ещё и некий GPU. Такая замысловатая аббревиатура, но похожая на предыдущую. Так давайте же разберемся, что такое GPU в компьютере, какие они бывают и какие различия есть у него с CPU.

Понравилась статья? Поделиться с друзьями:
Электронные изыски
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: